Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Nat Commun ; 14(1): 3286, 2023 06 13.
Article in English | MEDLINE | ID: covidwho-20231892

ABSTRACT

Some people remain healthier throughout life than others but the underlying reasons are poorly understood. Here we hypothesize this advantage is attributable in part to optimal immune resilience (IR), defined as the capacity to preserve and/or rapidly restore immune functions that promote disease resistance (immunocompetence) and control inflammation in infectious diseases as well as other causes of inflammatory stress. We gauge IR levels with two distinct peripheral blood metrics that quantify the balance between (i) CD8+ and CD4+ T-cell levels and (ii) gene expression signatures tracking longevity-associated immunocompetence and mortality-associated inflammation. Profiles of IR metrics in ~48,500 individuals collectively indicate that some persons resist degradation of IR both during aging and when challenged with varied inflammatory stressors. With this resistance, preservation of optimal IR tracked (i) a lower risk of HIV acquisition, AIDS development, symptomatic influenza infection, and recurrent skin cancer; (ii) survival during COVID-19 and sepsis; and (iii) longevity. IR degradation is potentially reversible by decreasing inflammatory stress. Overall, we show that optimal IR is a trait observed across the age spectrum, more common in females, and aligned with a specific immunocompetence-inflammation balance linked to favorable immunity-dependent health outcomes. IR metrics and mechanisms have utility both as biomarkers for measuring immune health and for improving health outcomes.


Subject(s)
COVID-19 , Longevity , Female , Humans , Aging , Inflammation , Outcome Assessment, Health Care
2.
Front Psychiatry ; 14: 1100242, 2023.
Article in English | MEDLINE | ID: covidwho-2319645

ABSTRACT

Objective: In early March 2022, the highly contagious Omicron variant rapidly emerged in Shanghai. This study aimed to explore the prevalence and associated factors of depression and anxiety in isolated or quarantined populations under lockdown. Methods: A cross-sectional study was conducted between May 12 and 25, 2022. The depressive and anxiety symptoms, perceived stress, self-efficacy and perceived social support in the 167 participants under isolated or quarantined were examined using the Patient Health Questionnaires-9 (PHQ-9), the Generalized Anxiety Disorder-7 (GAD-7), the Perceived Stress Scale-10 (PSS-10), the General Self-Efficacy Scale (GSES) and the Perceived Social Support Scale (PSSS). Data on demographic information were also collected. Findings: The prevalence of depression and anxiety in isolated or quarantined populations was estimated to be 12 and 10.8%, respectively. Higher education level, being healthcare workers, being infected, longer duration of segregation and higher perceived stress level were identified as risk factors for depression and anxiety. Furthermore, the relationship between perceived social support and depression (anxiety) was mediated not only by perceived stress but also the chain of self-efficacy and perceived stress. Conclusion: Being infected, higher education level, longer duration of segregation and higher perceived stress were associated with higher levels of depression and anxiety among isolated or quarantined populations under lockdown. The formulation of psychological strategies that promote one's perceived social support and self-efficacy as well as reduce perceived stress is supposed to be drawn.

3.
Cell Discov ; 9(1): 2, 2023 Jan 06.
Article in English | MEDLINE | ID: covidwho-2185790

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global pandemic. Antibody resistance dampens neutralizing antibody therapy and threatens current global Coronavirus (COVID-19) vaccine campaigns. In addition to the emergence of resistant SARS-CoV-2 variants, little is known about how SARS-CoV-2 evades antibodies. Here, we report a novel mechanism of extracellular vesicle (EV)-mediated cell-to-cell transmission of SARS-CoV-2, which facilitates SARS-CoV-2 to escape from neutralizing antibodies. These EVs, initially observed in SARS-CoV-2 envelope protein-expressing cells, are secreted by various SARS-CoV-2-infected cells, including Vero E6, Calu-3, and HPAEpiC cells, undergoing infection-induced pyroptosis. Various SARS-CoV-2-infected cells produce similar EVs characterized by extra-large sizes (1.6-9.5 µm in diameter, average diameter > 4.2 µm) much larger than previously reported virus-generated vesicles. Transmission electron microscopy analysis and plaque assay reveal that these SARS-CoV-2-induced EVs contain large amounts of live virus particles. In particular, the vesicle-cloaked SARS-CoV-2 virus is resistant to neutralizing antibodies and able to reinfect naïve cells independent of the reported receptors and cofactors. Consistently, the constructed 3D images show that intact EVs could be taken up by recipient cells directly, supporting vesicle-mediated cell-to-cell transmission of SARS-CoV-2. Our findings reveal a novel mechanism of receptor-independent SARS-CoV-2 infection via cell-to-cell transmission, provide new insights into antibody resistance of SARS-CoV-2 and suggest potential targets for future antiviral therapeutics.

4.
Vaccines (Basel) ; 10(12)2022 Dec 09.
Article in English | MEDLINE | ID: covidwho-2155416

ABSTRACT

Safe and effective vaccines for Corona Virus Disease 2019 (COVID-19) can prevent the virus from infecting human populations and treat patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this study, we discuss the inhibitory abilities of primary and booster vaccine-induced antibodies inhibitory ability toward the SARS-CoV-2 wild-type strain, as well as B.1.1.7, B.1.351, P.1, B.1.617.2, and B.1.1.529. We confirmed these antibodies had the strongest inhibitory effects on the wild-type strain and cross-inhibition activities against other mutant strains after two inactivated vaccine doses. However, the B.1.351, B.1.617.2 and B.1.1.529 mutants exhibit antibody resistance in the vaccine serum. Antibodies induced by homologous inactivated vaccines (n = 92) presented more effective inhibition against tested SARS-CoV-2 strains (p < 0.0001), especially B.1.351, B.1.617.2, and B.1.1.529 mutant strains, which had strong immune escape characteristics. In addition, a heterologous booster vaccination (n = 50) of a protein subunit vaccine ZifiVax (ZF2001) significantly restored humoral immune responses and even showed an increasing response against wild-type, B.1.351, B.1.617.2, and B.1.1.529 than homologous inactivated vaccines. Our analysis of the humoral immune response elicited by the different vaccine regimens, including inhibiting antibodies, indicated that a booster, whether homologous or heterologous, could be essential for achieving greater efficacy against SARS-CoV-2.

5.
Commun Med (Lond) ; 2(1): 151, 2022 Nov 25.
Article in English | MEDLINE | ID: covidwho-2133667

ABSTRACT

BACKGROUND: People living with chronic disease, particularly seniors (≥60 years old), made up of most severe symptom and death cases among SARS-CoV-2 infected patients. However, they are lagging behind in the national COVID-19 vaccination campaign in China due to the uncertainty of vaccine safety and effectiveness. Safety and immunogenicity data of COVID-19 vaccines in people with underlying medical conditions are needed to address the vaccine hesitation in this population. METHODS: We included participants (≥40 years old) who received two doses of CoronaVac inactivated vaccines (at a 3-5 week interval) and were healthy or had at least one of 6 common chronic diseases. The incidence of adverse events after vaccination was monitored. Vaccine immunogenicity was studied by determining neutralizing antibodies and SARS-CoV-2-specific T cell responses post vaccination. RESULTS: Here we show that chronic diseases are associated with a higher rate of mild fatigue following the first dose of CoronaVac. By day 14-28 post vaccination, the neutralizing antibody level shows no significant difference between disease groups and healthy controls, except for people with coronary artery disease (p = 0.0287) and chronic respiratory disease (p = 0.0416), who show moderate reductions. Such differences diminish by day 90 and 180. Most people show detectable SARS-CoV-2-specific T cell responses at day 90 and day 180 without significant differences between disease groups and healthy controls. CONCLUSIONS: Our results highlight the comparable safety, immunogenicity and cellular immunity memory of CoronaVac in seniors and people living with chronic diseases. This data should reduce vaccine hesitancy in this population.


People living with chronic diseases, particularly those over the age of 60, are more likely to have severe symptoms and die following SARS-CoV-2 infection. However, many have not been vaccinated during the national COVID-19 vaccination campaign in China due to concerns about vaccine safety and effectiveness. Here we show that the inactivated COVID-19 vaccine, CoronaVac, is as safe in older people with chronic diseases as it is for healthy people. Also, only slightly differences are seen in the immune response of people with diseases compared to healthy people. Overall, our results highlight that the CoronaVac vaccine is safe and effective in people living with chronic diseases.

6.
Sci Rep ; 12(1): 19165, 2022 Nov 10.
Article in English | MEDLINE | ID: covidwho-2118041

ABSTRACT

Machine learning methods are a novel way to predict and rank donors' willingness to donate blood and to achieve precision recruitment, which can improve the recruitment efficiency and meet the challenge of blood shortage. We collected information about experienced blood donors via short message service (SMS) recruitment and developed 7 machine learning-based recruitment models using PyCharm-Python Environment and 13 features which were described as a method for ranking and predicting donors' intentions to donate blood with a floating number between 0 and 1. Performance of the prediction models was assessed by the Area under the receiver operating characteristic curve (AUC), accuracy, precision, recall, and F1 score in the full dataset, and by the accuracy in the four sub-datasets. The developed models were applied to prospective validations of recruiting experienced blood donors during two COVID-19 pandemics, while the routine method was used as a control. Overall, a total of 95,476 recruitments via SMS and their donation results were enrolled in our modelling study. The strongest predictor features for the donation of experienced donors were blood donation interval, age, and donation frequency. Among the seven baseline models, the eXtreme Gradient Boosting (XGBoost) and Support vector machine models (SVM) achieved the best performance: mean (95%CI) with the highest AUC: 0.809 (0.806-0.811), accuracy: 0.815 (0.812-0.818), precision: 0.840 (0.835-0.845), and F1 score of XGBoost: 0.843 (0.840-0.845) and recall of SVM: 0.991 (0.988-0.994). The hit rate of the XGBoost model alone and the combined XGBoost and SVM models were 1.25 and 1.80 times higher than that of the conventional method as a control in 2 recruitments respectively, and the hit rate of the high willingness to donate group was 1.96 times higher than that of the low willingness to donate group. Our results suggested that the machine learning models could predict and determine the experienced donors with a strong willingness to donate blood by a ranking score based on personalized donation data and demographical details, significantly improve the recruitment rate of blood donors and help blood agencies to maintain the blood supply in emergencies.


Subject(s)
Blood Donors , COVID-19 , Humans , COVID-19/epidemiology , Machine Learning , Intention , Disease Outbreaks
7.
Int J Rheum Dis ; 25(8): 861-868, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1916016

ABSTRACT

OBJECTIVES: We described the set-up of a new multidisciplinary psoriatic arthritis-psoriasis (PsA-PsO) clinic incorporating service, education, and research between rheumatologists and dermatologists for PsA. We describe the patients' and learners' experience of this shared-care model. METHODS: A PsA-PsO clinic was newly set up in 2019. Each patient was first seen by a trainee, followed by both a dermatologist and a rheumatologist simultaneously in the same consultation room. We collected patients' and learners' experience through self-administered surveys. RESULTS: From May 2019 to January 2020, we collected data from 44 visits (55% new referrals, 45% follow up) from 30 patients: 22.7% were referred for diagnostic doubts, 77.3% were for therapeutic issues. Eight of the 10 patients referred for diagnosis had PsA confirmed. Medication changes occurred in 63.6% of visits; 63.6% of patients continued follow up in the PsA-PsO clinic, and 36.4% were discharged back to the original respective care. The median (interquartile range) rating of patient satisfaction of the care was 8 (7-8) out of 10; 96.1% of patients would "probably" or "definitely recommend" the care to others. From 20 learners, 95% reported the experience as "extremely" or "very" beneficial to training. The PsA-PsO clinic was suspended during the COVID-19 pandemic from February 2020 because of lack of available staff. The service was resumed gradually from May 2021. CONCLUSION: Despite challenges, we report the set-up of a new care model between dermatologists and rheumatologists for care of patients with psoriatic disease. The care model was well received by patients. Learners from various levels reported benefit from the learning experience.


Subject(s)
Arthritis, Psoriatic , COVID-19 , Dermatology , Psoriasis , Rheumatology , Arthritis, Psoriatic/drug therapy , Arthritis, Psoriatic/therapy , Humans , Pandemics , Psoriasis/diagnosis
8.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1794955.v1

ABSTRACT

People living with chronic disease, particularly seniors older than 60 years old, are lagging behind in the national COVID-19 vaccination campaign in China due to the uncertainty of vaccine safety and effectiveness. However, this special population made up of most severe symptom and death cases among SARS-CoV-2 infected patients and should be prioritized in vaccination program. Thus, safety and immunogenicity data of COVID-19 vaccines in people with underlying medical conditions are needed to address the vaccine hesitancy in this special population. Here, we report a retrospective cohort study evaluating the immunogenicity and safety of the inactivated COVID-19 vaccine, CoronaVac, in people with at least one of the six common diseases, focusing on seniors (N = 969). We found that CoronaVac is as safe in people with chronic diseases as that in healthy control, without serious adverse event reported in this study. By day 14-28 post vaccination, we observed no significant difference for the antibody responses between disease groups and healthy control, except for the coronary artery disease (p=0.03) and chronic respiratory disease group (p=0.04) showing moderate reduction. Such difference diminished by day 90 and 180, as neutralizing antibodies significantly reduced in all participants. Most people showed detectable SARS-CoV-2-specific T cell response at day 90 and day 180 without significant difference between disease groups and healthy control. Overall, our results highlight the comparable safety, immunogenicity and cellular immunity memory of CoronaVac in seniors and people living with chronic diseases, addressing vaccine hesitancy for this special population.


Subject(s)
COVID-19
10.
Pharmaceutics ; 14(2)2022 Feb 16.
Article in English | MEDLINE | ID: covidwho-1699476

ABSTRACT

Vaccines are powerful tools for controlling microbial infections and preventing epidemic diseases. Efficient inactive, subunit, or viral-like particle vaccines usually rely on a safe and potent adjuvant to boost the immune response to the antigen. After a slow start, over the last decade there has been increased developments on adjuvants for human vaccines. The development of adjuvants has paralleled our increased understanding of the molecular mechanisms for the pattern recognition receptor (PRR)-mediated activation of immune responses. Toll-like receptors (TLRs) are a group of PRRs that recognize microbial pathogens to initiate a host's response to infection. Activation of TLRs triggers potent and immediate innate immune responses, which leads to subsequent adaptive immune responses. Therefore, these TLRs are ideal targets for the development of effective adjuvants. To date, TLR agonists such as monophosphoryl lipid A (MPL) and CpG-1018 have been formulated in licensed vaccines for their adjuvant activity, and other TLR agonists are being developed for this purpose. The COVID-19 pandemic has also accelerated clinical research of vaccines containing TLR agonist-based adjuvants. In this paper, we reviewed the agonists for TLR activation and the molecular mechanisms associated with the adjuvants' effects on TLR activation, emphasizing recent advances in the development of TLR agonist-based vaccine adjuvants for infectious diseases.

11.
Cell Discov ; 8(1): 9, 2022 Feb 01.
Article in English | MEDLINE | ID: covidwho-1661959

ABSTRACT

Safe, effective, and economical vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are needed to achieve adequate herd immunity and end the pandemic. We constructed a novel SARS-CoV-2 vaccine, CoVac501, which is a self-adjuvanting peptide vaccine conjugated with Toll-like receptor 7 (TLR7) agonists. The vaccine contains immunodominant peptides screened from the receptor-binding domain (RBD) and is fully chemically synthesized. It has been formulated in an optimized nanoemulsion formulation and is stable at 40 °C for 1 month. In non-human primates (NHPs), CoVac501 elicited high and persistent titers of protective neutralizing antibodies against multiple RBD mutations, SARS-CoV-2 original strain, and variants (B.1.1.7 and B.1.617.2). Specific peptides booster immunization against the B.1.351 variant has also been shown to be effective in improving protection against B.1.351. Meanwhile, CoVac501 elicited the increase of memory T cells, antigen-specific CD8+ T-cell responses, and Th1-biased CD4+ T-cell immune responses in NHPs. Notably, at an extremely high SARS-CoV-2 challenge dose of 1 × 107 TCID50, CoVac501 provided near-complete protection for the upper and lower respiratory tracts of cynomolgus macaques.

12.
Signal Transduct Target Ther ; 6(1): 428, 2021 12 17.
Article in English | MEDLINE | ID: covidwho-1585884

ABSTRACT

SARS-CoV-2 infection-induced hyper-inflammation links to the acute lung injury and COVID-19 severity. Identifying the primary mediators that initiate the uncontrolled hypercytokinemia is essential for treatments. Mast cells (MCs) are strategically located at the mucosa and beneficially or detrimentally regulate immune inflammations. In this study, we showed that SARS-CoV-2-triggered MC degranulation initiated alveolar epithelial inflammation and lung injury. SARS-CoV-2 challenge induced MC degranulation in ACE-2 humanized mice and rhesus macaques, and a rapid MC degranulation could be recapitulated with Spike-RBD binding to ACE2 in cells; MC degranulation altered various signaling pathways in alveolar epithelial cells, particularly, the induction of pro-inflammatory factors and consequential disruption of tight junctions. Importantly, the administration of clinical MC stabilizers for blocking degranulation dampened SARS-CoV-2-induced production of pro-inflammatory factors and prevented lung injury. These findings uncover a novel mechanism for SARS-CoV-2 initiating lung inflammation, and suggest an off-label use of MC stabilizer as immunomodulators for COVID-19 treatments.


Subject(s)
COVID-19/metabolism , Cell Degranulation , Lung Injury/metabolism , Mast Cells/metabolism , Pulmonary Alveoli/metabolism , SARS-CoV-2/metabolism , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Animals , COVID-19/genetics , Cell Line, Tumor , Female , Humans , Lung Injury/genetics , Lung Injury/virology , Macaca mulatta , Male , Mice, Inbred BALB C , Mice, Transgenic , Pulmonary Alveoli/virology , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
13.
National Bureau of Economic Research Working Paper Series ; No. 27344, 2020.
Article in English | NBER | ID: grc-748226

ABSTRACT

We report the results of a nationally-representative sample of the US population during the COVID-19 pandemic. The survey ran in two waves from April 1-5, 2020 and May 2-8, 2020. Of those employed pre-COVID-19, we find that about half are now working from home, including 35.2% who report they were commuting and recently switched to working from home. In addition, 10.1% report being laid-off or furloughed since the start of COVID-19. There is a strong negative relationship between the fraction in a state still commuting to work and the fraction working from home. We find that the share of people switching to remote work can be predicted by the incidence of COVID-19 and that younger people were more likely to switch to remote work. Furthermore, states with a higher share of employment in information work including management, professional and related occupations were more likely to shift toward working from home and had fewer people laid off or furloughed. We find no substantial change in results between the two waves, suggesting that most changes to remote work manifested by early April.

14.
Brief Bioinform ; 23(1)2022 01 17.
Article in English | MEDLINE | ID: covidwho-1429177

ABSTRACT

Whether risk genes of severe coronavirus disease 2019 (COVID-19) from genome-wide association study could play their regulatory roles by interacting with host genes that were interacted with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) proteins was worthy of exploration. In this study, we implemented a network-based approach by developing a user-friendly software Network Calculator (https://github.com/Haoxiang-Qi/Network-Calculator.git). By using Network Calculator, we identified a network composed of 13 risk genes and 28 SARS-CoV-2 interacted host genes that had the highest network proximity with each other, with a hub gene HNRNPK identified. Among these genes, 14 of them were identified to be differentially expressed in RNA-seq data from severe COVID-19 cases. Besides, by expression enrichment analysis in single-cell RNA-seq data, compared with mild COVID-19, these genes were significantly enriched in macrophage, T cell and epithelial cell for severe COVID-19. Meanwhile, 74 pathways were significantly enriched. Our analysis provided insights for the underlying genetic etiology of severe COVID-19 from the perspective of network biology.


Subject(s)
COVID-19 , RNA-Seq , SARS-CoV-2 , Viral Proteins , COVID-19/genetics , COVID-19/metabolism , Genome-Wide Association Study , Humans , Patient Acuity , Risk Factors , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Viral Proteins/genetics , Viral Proteins/metabolism
15.
Signal Transduct Target Ther ; 6(1): 328, 2021 09 01.
Article in English | MEDLINE | ID: covidwho-1392810

ABSTRACT

Understanding the pathological features of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in an animal model is crucial for the treatment of coronavirus disease 2019 (COVID-19). Here, we compared immunopathological changes in young and old rhesus macaques (RMs) before and after SARS-CoV-2 infection at the tissue level. Quantitative analysis of multiplex immunofluorescence staining images of formalin-fixed paraffin-embedded (FFPE) sections showed that SARS-CoV-2 infection specifically induced elevated levels of apoptosis, autophagy, and nuclear factor kappa-B (NF-κB) activation of angiotensin-converting enzyme 2 (ACE2)+ cells, and increased interferon α (IFN-α)- and interleukin 6 (IL-6)-secreting cells and C-X-C motif chemokine receptor 3 (CXCR3)+ cells in lung tissue of old RMs. This pathological pattern, which may be related to the age-related pro-inflammatory microenvironment in both lungs and spleens, was significantly correlated with the systemic accumulation of CXCR3+ cells in lungs, spleens, and peripheral blood. Furthermore, the ratio of CXCR3+ to T-box protein expression in T cell (T-bet)+ (CXCR3+/T-bet+ ratio) in CD8+ cells may be used as a predictor of severe COVID-19. These findings uncovered the impact of aging on the immunopathology of early SARS-CoV-2 infection and demonstrated the potential application of CXCR3+ cells in predicting severe COVID-19.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Cellular Microenvironment/immunology , Lung/immunology , Receptors, CXCR3/immunology , SARS-CoV-2/immunology , Angiotensin-Converting Enzyme 2/immunology , Animals , CD8-Positive T-Lymphocytes/pathology , COVID-19/pathology , Disease Models, Animal , Inflammation/immunology , Inflammation/pathology , Interferon-alpha/immunology , Interleukin-6/immunology , Lung/pathology , Lung/virology , Macaca mulatta , Male
17.
BMC Infect Dis ; 21(1): 693, 2021 Jul 20.
Article in English | MEDLINE | ID: covidwho-1318276

ABSTRACT

BACKGROUND: Nosocomial infections (NIs) are an important cause of mortality, and increasing evidence reveals that the prevalence of NIs can be reduced through effective prevention and control measures. The aim of this study was to investigate the impact of the prevention and control measures for the COVID-19 pandemic on NIs. METHODS: A retrospective study was conducted to analyze the prevalence of NIs before and after COVID-19 pandemic for 6 months in the Children's Hospital of Soochow University. RESULTS: A total of 39,914 patients in 2019 and 34,645 patients in 2020 were admitted to the hospital during the study. There were 1.39% (481/34645) of patients with NIs in 2020, which was significantly lower than the 2.56% (1021/39914) of patients in 2019. The rate of critical and fatal cases was also decreased. In addition, the rate of appropriate handwashing, the number of protective gloves and aprons used per person and the number of healthcare staff per patients were significantly increased. Except for the ICU, the prevalence of nosocomial infection in most departments decreased from 2019 to 2020. Regarding the source of infections, a significant reduction was mainly observed in respiratory (0.99% vs 0.42%, p = 0.000) and digestive tract (0.63% vs 0.14%, p = 0.000). The microorganism analysis of respiratory infections indicated an obvious decline in acinetobacters and fungi. The most significant decline of pathogens in gastrointestinal infections was observed for rotavirus. The comparison of catheter-related nosocomial infections between 2019 and 2020 did not show significant differences. CONCLUSIONS: The prevention and control measures for the COVID-19 pandemic have reduced the nosocomial infection in almost all departments, except the ICU, mainly regarding respiratory, gastrointestinal, and oral infections, while catheter-related infections did not show any differences.


Subject(s)
COVID-19/prevention & control , Cross Infection/epidemiology , SARS-CoV-2 , Adolescent , Child , Child, Hospitalized , Child, Preschool , China/epidemiology , Cross Infection/etiology , Female , Hospitals, Pediatric , Humans , Infant , Infant, Newborn , Infection Control , Male , Pandemics , Prevalence , Retrospective Studies , Tertiary Care Centers
18.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.06.24.449680

ABSTRACT

SARS-CoV-2 infection-induced hyper-inflammation links to the acute lung injury and COVID-19 severity. Identifying the primary mediators that initiate the uncontrolled hypercytokinemia is essential for treatments. Mast cells (MCs) are strategically located at the mucosa and beneficially or detrimentally regulate immune inflammations. Here we showed that SARS-CoV-2-triggeed MC degranulation initiated alveolar epithelial inflammation and lung injury. SARS-CoV-2 challenge induced MC degranulation in ACE-2 humanized mice and rhesus macaques, and a rapid MC degranulation could be recapitulated with Spike-RBD binding to ACE2 in cells; MC degranulation alterred various signaling pathways in alveolar epithelial cells, particularly, led to the production of pro-inflammatory factors and consequential disruption of tight junctions. Importantly, the administration of clinical MC stabilizers for blocking degranulation dampened SARS-CoV-2-induced production of pro-inflammatory factors and prevented lung injury. These findings uncover a novel mechanism for SARS-CoV-2 initiating lung inflammation, and suggest an off-label use of MC stabilizer as immunomodulators for COVID-19 treatments.


Subject(s)
Lung Diseases , Adenocarcinoma, Bronchiolo-Alveolar , Pneumonia , Acute Lung Injury , COVID-19 , Inflammation
19.
Medicine (Baltimore) ; 100(24): e26279, 2021 Jun 18.
Article in English | MEDLINE | ID: covidwho-1269620

ABSTRACT

ABSTRACT: Early determination of coronavirus disease 2019 (COVID-19) pneumonia from numerous suspected cases is critical for the early isolation and treatment of patients.The purpose of the study was to develop and validate a rapid screening model to predict early COVID-19 pneumonia from suspected cases using a random forest algorithm in China.A total of 914 initially suspected COVID-19 pneumonia in multiple centers were prospectively included. The computer-assisted embedding method was used to screen the variables. The random forest algorithm was adopted to build a rapid screening model based on the training set. The screening model was evaluated by the confusion matrix and receiver operating characteristic (ROC) analysis in the validation.The rapid screening model was set up based on 4 epidemiological features, 3 clinical manifestations, decreased white blood cell count and lymphocytes, and imaging changes on chest X-ray or computed tomography. The area under the ROC curve was 0.956, and the model had a sensitivity of 83.82% and a specificity of 89.57%. The confusion matrix revealed that the prospective screening model had an accuracy of 87.0% for predicting early COVID-19 pneumonia.Here, we developed and validated a rapid screening model that could predict early COVID-19 pneumonia with high sensitivity and specificity. The use of this model to screen for COVID-19 pneumonia have epidemiological and clinical significance.


Subject(s)
Algorithms , COVID-19 Testing/methods , COVID-19/diagnosis , Mass Screening/methods , SARS-CoV-2/isolation & purification , Adult , China , Female , Humans , Male , Middle Aged , Prospective Studies , ROC Curve , Sensitivity and Specificity
20.
Zool Res ; 42(3): 350-353, 2021 May 18.
Article in English | MEDLINE | ID: covidwho-1231641

ABSTRACT

Coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus (SARS-CoV-2), has become an unprecedented global health emergency. At present, SARS-CoV-2-infected nonhuman primates are considered the gold standard animal model for COVID-19 research. Here, we showed that northern pig-tailed macaques ( Macaca leonina, NPMs) supported SARS-CoV-2 replication. Furthermore, compared with rhesus macaques, NPMs showed rapid viral clearance in lung tissues, nose swabs, throat swabs, and rectal swabs, which may be due to higher expression of interferon (IFN)-α in lung tissue. However, the rapid viral clearance was not associated with good outcome. In the second week post infection, NPMs developed persistent or even more severe inflammation and body injury compared with rhesus macaques. These results suggest that viral clearance may have no relationship with COVID-19 progression and SARS-CoV-2-infected NPMs could be considered as a critically ill animal model in COVID-19 research.


Subject(s)
COVID-19/immunology , COVID-19/virology , Macaca nemestrina , SARS-CoV-2/immunology , Animals , Disease Models, Animal , Interferon-alpha/analysis , Interleukin-1beta/analysis , Interleukin-6/analysis , Lung/immunology , Lung/virology , Nose/virology , Pharynx/virology , RNA, Viral/analysis , Rectum/virology , SARS-CoV-2/genetics
SELECTION OF CITATIONS
SEARCH DETAIL